'B|B/C|

DESIGNS DEPARTMENT

DESIGNS DEPARTMENT HANDBOOK

No. 2.467(82)

ZELDA Development System

EP1M/27

Users” Handbook

Part 4 - System Software Interfaces

BRITISH BROADCASTING CORPORATION
ENGINEERING DIVISION

Issue 1
31/1/84

DESIGNS DEPARTMENT HANDBOOK

No. 2.467(82)

ZELDA Development System

EP1M/27

Users” Handbook

Part 4 - System Software Interfaces

(D. C. Savage)
for Head of Designs Department

Written by: N. A. F. Cutmore
D. J. King
R. T. Russell

A copy of the master is held on disk file. Any amendments must include
revision of both the disk file and the paper master, together with a new
issue date.

The revision must be approved by the Head of Monitoring and Control
Section.

D.D. Handbook No. 2.467(82)
Title Sheet

Issue 1
31/1/84

DESIGNS DEPARTMENT HANDBOOK

No. 2.467(82)

ZELDA Development System

EP1M/27

Users” Handbook

Part 4 - System Software Interfaces

CONTENTS
1. Introduction
2. Documentation
3. Foreword
4. Routines within the system monitor
5. Routines within the disk operating system
6. Other callable routines and drivers
7. System RAM map
8. Examples of use of routines

9. Index

Appendices

1. Definition of "language"
2. Details of disk file storage

3. Input/output channel usage

D.D. Handbook No. 2.467(82)

Contents Sheet

Issue 1
31/1/84

Introduction

DESIGNS DEPARTMENT HANDBOOK

No. 2.467(82)

ZELDA Development System

EP1M/27

Users” Handbook

Part 4 - System Software Interfaces

ZELDA (Zeus Editor, Loader, Disk operating system and Assembler) is

a Z80-based

software development system built from Zeus modules.

The system is a microcomputer with twin 8-inch floppy disks, 49
Kbytes of memory, keyboard, VDU and printer. It may be used for a
variety of applications other than 280 assembly 1language software
development by using programs supplied on disk with the system.

Documentation

The Zelda System Users” Handbook is divided into four parts. These

are:

Part 1

Part 2

Part 3

Part 4

Hardware 2.464(82)

Describes the configuration of the sub-units, user I/0
connections, how to expand the system, and is supplied
with the Handbooks of all sub-units.

Firmware 2.465(82)

Describes the resident Monitor, Text Editor, 280
Mnemonic Assembler, Relocating Linking Loader and
Peripheral Interchange Program, and explains how to
use them.

System Utilities 2.466(82)

Describes the utility programs supplied with the
system on floppy disk.

System Software Interfaces (this document)

Describes in detail the resident routines available to
the user, and illustrates how to write programs for
use on ZELDA.

D.D. Handbook No. 2.467(82)
Sheet 1 of 47 sheets

Issue 1
31/1/84

Other relevant documents include:

Zeus System EDI EDI 10412
Zeus Users” Manual DDTM

A Modular 8-bit Microcomputer DDTM 2.447(80)
Automatic Fault Detection DDTM 2.448(80)
Equipment with Customer Options DDTM 2.449(80)

BBC Code of Practice in the use of PROMs DDTM 1.155(80)

Foreword

This document provides a brief description of useful subroutines in
the Zelda firmware which may be called by the user. Future issues
of the firmware will preserve the addresses and register usage
given.

The reader is expected to have read and be familiar with the terms
used in previous parts of the Zelda System Users” Handbook (D.D.H.B.
2.464-6).

Under certain error conditions, several of the Disk Operating System
(DOS) routines 1listed in section 5 of this handbook may transfer
command to the PIP program (see section 5 of Part 2). To save
space, each of the possible errors has been given a number as
follows :-

1) FILE NOT FOUND
2) FILE ALREADY EXISTS

3) ILLEGAL FILENAME

4) DISK FULL

5) DIRECTORY FULL

6) DIRECTORY ERROR

7) ILLEGAL TRACK NUMBER

8) DEVICE DOES NOT EXIST

9) NO OPEN FILE ON CHANNEL n
10) DISK FAIL -

A fuller description of the meaning of these error messages can be
found in Appendix 1 of part 2 of the handbook.

D.D. Handbook No. 2.467(82)
Sheet 2 of 47 sheets

Issue 1
31/1/84

4. ROUTINES WITHIN THE SYSTEM MONITOR

These

routines are subroutines callable by the user except where

stated otherwise.

4.1

4.2

NAME : RENTRY
ADDRESS : E11D
FUNCTION: ENTER MONITOR PROGRAM

This address provides the means for a user program to pass
control back to the system monitor. A jump or call to this
address will transfer command to the monitor program as
detailed in section 4 of part 2 (D.D.H.B. 2.465(82)). Any
disk files left open when this address is accessed will be
closed and, if a disk error occurs, control will pass to the
Peripheral Interchange Program as detailed in section 5 of
part 2. No inputs are required but since the routine
unconditionally sets interrupts to Mode 2, the user must
ensure that any interrupts left enabled will work in this
mode.

NAME: PTXT
ADDRESS: E3C7
FUNCTION: PRINT TEXT

This routine sends a text string to the specified output
channel and then returns to the calling program. Immediate
return mode (bit 7 of E = 1) is not permitted when using
this routine.

On input Bits 0,1 and 2 of E determine channel in use
(001, 011l or 101)
Bit 3 of E if set will initialise the driver (see
WRCHR (4.5))
HL points to the first character of the string to
be output (terminated by ETX)

On output A and D contain ETX
Bits 3 and 7 of E are reset by the driver in use
HL addresses the ETX
The zero flag is set

Destroys Registers A,D,E,H,L and flags

This routine calls WRCHR (4.5).

D.D. Handbook No. 2.467(82)
Sheet 3 of 47 sheets

Issue 1
31/1/84

4.3

4.4

NAME: SCAN
ADDRESS: E414
FUNCTION: INPUT OPERANDS

This routine may be used to obtain from the operator up to
three sixteen bit values for use in a program. The numbers
entered are stored in specific places in RAM along with a
record of how many values there are and how the routine was
exited.

This routine has no input requirements.

On output OPRl contains the lst operand entered
OPR2 contains the 2nd operand entered
OPR3 contains the 3rd operand entered
OPFLG contains the number of operands returned
(max 3)
NXTCHR contains the terminator entered

Destroys All registers (including the alternate set)
except SP and I

See section 6 for a list of the RAM addresses allocated to
the labels.

The routine requires the operator to type in up to three
operands and will return immediately if a non-allowed
character 1is entered. A description of what constitutes a
legal operand is given in section 4.6 of part 2 of this
handbook. The only acceptable terminators are 0D Hex and SE
Hex (RETURN and CARAT); any other terminator will cause an
error in the value stored in OPFLG. The user is advised to
check the contents of NXTCHR on return from this routine and
should not use the values returned in OPR1-3 if an illegal
terminator is found.

If more than three operands are entered, the third and
subsequent ones will be summed and placed in OPR3; OPFLG
will be set to 3.

See section 8.2 in this document for an example of the use
of the SCAN routine.

NAME : RDCHR
ADDRESS: E522
FUNCTION: READ CHARACTER

This routine will call the input driver allocated to the
channel determined by bits 1 & 2 of the E register. This is
the normal way for a user program to read from a disk file
or to get entries from the keyboard, etc.

D.D. Handbook No. 2.467(82)
Sheet 4 of 47 sheets

Issue 1
31/1/84

4.5

On input Bits 0, 1 and 2 of E determine channel in use:
000 will use :CI
010 will use :0I
100 will use :SI
Bit 3 of E causes driver initialisation if set
(and a "rewind" operation if this facility is
supported by the driver).
Bit 7 of E selects immediate return mode if set
(if supported by the driver).

On output If bit 7 of E 1is reset, A and D contain the
character read.
If bit 7 of E is set an immediate return took
place.
Bit 3 of E is reset (by the driver).
The carry flag is set on physical EOF (disk files

only).
Destroys Registers A,D,E and flags

Note that the disk file structure of Zelda requires use of
the carry flag to determine when the end of a binary file is
reached. Any modifications the user may make to a driver
that reads disk files should ensure that the carry flag is
not destroyed.

See Appendix 4 in part 2 for details of how to write a new
driver routine, and for a description of the operation of
the initialise and immediate return functions.

To read a disk file it is necessary to use ASSIGN (5.5) or
GETDF (5.6) before using this routine - (see section 8.1 of
this document for an example).

NAME : WRCHR
ADDRESS: E527
FUNCTION: WRITE CHARACTER

This routine will call the output driver allocated to the
channel determined by bits 1 & 2 of the E register. This is
the normal way for a user program to write to a device/disk
file or to the console.

On input D contains the character to be written.
Bits 0, 1 & 2 of E determine channel in use:
001 will use :CO
011 will use :00
101 will use :SO
Bit 3 of E causes driver initialisation if set.
Bit 7 of E selects immediate return mode if set
(if supported by the driver).

On output If bit 7 of E is reset, A and D contain the

character written.
If bit 7 of E is set an immediate return took

Place.

D.D. Handbook No. 2.467(82)
Sheet 5 of 47 sheets

Issue 1
31/1/84

4.6

4.7

Bit 3 of E is reset (by the driver).
Destroys Registers A,E and flags

See Appendix 4 in part 2 for details of haw to write a new
driver routine, and for a description of the operation of
the initialise and immediate return functions.

To write to a disk file it is necessary to use ASSIGN (5.5)
or GETDF (5.6) before using this routine - (see section 8.1
of this document for an example).

NAME: SRCHR
ADDRESS: E541
FUNCTION: SEARCH RESIDENT MNEMONICS

This routine examines the resident mnemonic 1list held in
PROM to see if a specified driver, jump address or register
mnemonic exists.

On input HL contains mnemonic (e.g. H="T" and L = "P"
will search for :PT)

On output HL contains the mnemonic value (i.e. where to
look for data or where to call) if the mnemonic
is found, otherwise HL is unchanged
The =zero flag is set if the mnemonic is found,
reset if not

Destroys Registers A,H,L and flags

This routine is normally used with its companion SRCHU (4.7)
which examines the RAM mnemonic list. The following
mnemonics are stored in the PROM table :-
:A, :F, :H, :L, :B, :C, :D, :E, :IX, :I1IY¥, :I, :IF, :SP,
¢PC , :CI, :CO, :0I, :00, :SI, :S50, :TK, :TT and :ER.

(See section 4.6 of part 2 for further information).

All other mnemonics (if they exist) will be in the RAM
tahle. Note that a single letter mnemonic (e.g :A) is still
considered to be two characters 1long when searching - in
this case, the H register should contain 20 Hex (a space).

NAME : SRCHU
ADDRESS: E547
FUNCTION: SEARCH USER MNEMONICS

This routine performs exactly the same function as SRCHR
(4.6) but examines the user”s mnemonic list held in RAM (see
section 4.6 of part 2 for further details).

Inputs and outputs are as for SRCHR.

D.D. Handbook No. 2.467(82)
Sheet 6 of 47 sheets

Issue 1
31/1/84

4.8

4.9

4.10

NAME: ASBIN
ADDRESS: E583
FUNCTION: CONVERT ASCII TO BINARY

This routine will convert a single ASCII hexadecimal
character into its binary value.

On input A contains the character to be converted

On output A contains the binary value associated with the
character

Destroys Register A and flags

No check is made of the Hex character on entry. If it is in
the range "0" - "9", the routine subtracts 30 Hex; for any
other character it subtracts 37 Hex.

NAME : PACC
ADDRESS : E58B
FUNCTION: PRINT ACCUMULATOR (HEX)

This routine sends to the specified output channel a two
character hexadecimal representation of the value in the
accumulator. Immediate return mode (specified by bit 7 of
E = 1) is not permitted when using this routine.

On input Bits 0, 1 & 2 of E determine the channel in use
Bit 3 of E if set will initialise the driver (see
WRCHR (4.5))

On output A and D contain the second digit printed
Bits 3 and 7 of E are affected by the driver in
use

Destroys Registers A,D,E and flags

NAME : ECHO
ADDRESS: E597
FUNCTION: READ THEN WRITE A CHARACTER

This routine provides a single call to read and write a
character. A call to this routine is equivalent to :-

CALL RDCHR
CALL WRCHR

Immediate return mode (bit 7 of E = 1) is not permitted.
See entries for RDCHR (4.4) and WRCHR (4.5).

D.D. Handbook No. 2.467(82)
Sheet 7 of 47 sheets

Issue 1
31/1/84

4.11

4.12

4.13

NAME: CRLF
ADDRESS: E59C
FUNCTION: SEND A RETURN THEN A LINE FEED

This routine sends to the specified output channel a
carriage return (0D Hex), followed by a line feed (0A Hex).
It then returns to the calling program. Immediate return
mode (specified by bit 7 of E = 1) 1is not permitted when
using this routine.

On input Bits 0, 1 & 2 of E determine the channel in use
Bit 3 of E if set will initialise the driver (see
WRCHR (4.5))

On output A and D contain line feed (0OA Hex)
Bits 3 and 7 of E are affected by the driver in
use

Destroys Registers A,D,E and flags

NAME : SPACE
ADDRESS: E5A5
FUNCTION: PRINT A SPACE

This routine sends to the specified output channel a space
(20 Hex) and then returns to the calling program.

A call to this routine is equivalent to :-

LD D, °
CALL WRCHR

See entry for WRCHR (4.5).

NAME: PASP

ADDRESS: E5AA

FUNCTION: PRINT ACCUMULATOR THEN SPACE

A call to this routine is equivalent to :-

CALL PACC
CALL SPACE

See entries for PACC (4.9) and SPACE (4.12).

D.D. Handbook No. 2.467(82)
Sheet 8 of 47 sheets

Issue 1
31/1/84

4.14

4.15

4.16

NAME : PRVAL
ADDRESS : ES5AF
FUNCTION: PRINT HEX DIGIT

This routine sends the specified output channel a single
character corresponding to the hexadecimal value of the four
least significant bits of the accumulator.

On input Bits 0 - 3 of A contain value to be converted
Bits 0, 1 & 2 of E determine the channel in use
Bits 3,7 of E specify initialise/immediate return
(see WRCHR (4.5))

On output A and D contain the character sent
Bits 3 and 7 of E are affected by the driver in
use

Destroys Registers A,D,E and flags

NAME : PADDO
ADDRESS: E604
FUNCTION: PRINT ADDRESS AND SPACE

This routine sends to the specified output device a four
character hexadecimal representation of the value in the HL
register pair, followed by a space. It then returns to
calling program.

A call to this routine is equivalent to :-

LD A,H
CALL PACC
Lb A,L
CALL PACC
CALL SPACE

See entries for PACC (4.9), SPACE (4.12) and WRCHR (4.5).

NAME : TTID (mnemonic TK:)
ADDRESS: E689
FUNCTION: KEYBOARD INPUT DRIVER

This routine examines the 8251 USART servicing the Zelda
keyboard. If a character is waiting, it is returned with bit
7 reset. If no character is available, and the immediate
return flag (bit 7 of E) is reset, the routine will loop
until the character is entered.

On input Bit 7 of E if set will force immediate return if
no character is waiting.

On output If bit 7 of E is reset on output then A and D
contain the character read with bit 7 reset.

D.D. Handbook No. 2.467(82)
Sheet 9 of 47 sheets

Issue 1
31/1/84

4’17

4.18

If bit 7 of E 1is set on output then A is
destroyed

Destroys Registers A,D,E and flags

The normal console input driver is a routine which performs
"timeout" and "not ready" detection on the disk drives
before passing control to TTID. The user should be aware
that it 1is possible to corrupt disks by writing the wrong
directory onto them if the console input vector is altered
(as a disk change will not be noticed).

NAME: VDUOUT (mnemonic TT:)
ADDRESS: E6F9
FUNCTION: VDU OUTPUT DRIVER

This routine takes the character in the D register and puts
it onto the VDU screen at the current cursor position unless
it is a control code. See Appendix 5 of part 2 for a
description of how control codes are interpreted by this
routine.

On input D contains the character to be written
Bit 3 of E if set will initialise the driver

On output A and D contain the character
Bits 3 and 7 of E are reset

If bit 3 of E is set on input, the driver is arranged so
that subsequent characters will be printed in normal video
and control codes will perform their usual functions (i.e.
the effects of ESCAPE or SHIFT OUT are negated). See
Appendix 5 of part 2 of this handbook for details of the
effects of these and other control codes.

The normal console output driver is a routine which performs
extra functions before passing control to VDUOUT (see
Appendix 5 part 2). These functions are important for
correct operation of a large part of the system and the
console output channel should not normally be reallocated to
a different driver.

NAME : MOVCSR
ADDRESS: E774
FUNCTION: MOVE CURSOR

This routine moves the cursor on the VDU screen by a
specified number of character places

On input A contains the number of places required (in the
range - 80 to + 80 in signed integer format -
i.e. BO to 50 Hex)

On output The cursor is set to the new position and the

D.D. Handbook No. 2.467(82)
Sheet 10 of 47 sheets

Issue 1
31/1/84

4.19

4.20

screen is scrolled if needed
Destroys Register A and flags

If the cursor is moved downwards off the bottom line, or off
the right end of the bottom line, the screen will scroll up
by one 1line. If the cursor is moved upwards off the top
line, it will wrap around onto the bottom line and the
screen will not scroll.

NAME : GETCSR
ADDRESS: E7A7
FUNCTION: GET CURSOR ADDRESS

This routine returns with the HL register pair containing
the current VDU RAM address where the cursor is positioned.
The value returned will be in the range A000 - A7FF Hex.

On output HL contains the current screen address of the
cursor

Destroys H,L

NAME : OFFSET
ADDRESS:: E7F1
FUNCTION: RETURN RELATIVE CURSOR ADDRESS

This routine returns with the HL register pair containing
the number of character positions between the top left-hand
corner of the screen and the current cursor position. The
user can calculate from this value the row and column the

cursor is on.

On output DE contains the current address of the top left-
hand corner of the screen
HL contains the number of character positions
between the top left-hand corner and the current
cursor position

Destroys Registers A,D,E,H,L and flags

D.D. Handbook No. 2.467(82)
Sheet 11 of 47 sheets

Issue 1
31/1/84

5. ROUTINES WITHIN THE DISK OPERATING SYSTEM

These

routines are subroutines callable by the user except where

stated otherwise.

5.1

5.2

NAME : DSKIN
ADDRESS: E800
FUNCTION: DISK INPUT DRIVER

This routine reads a byte from a disk file or several
concatenated files. It requires a parameter block in RAM
which is usually set up by a call to the ASSIGN routine.
See entries for ASSIGN (5.5) and DSKIO (5.25).

On input Bit 1 of E determines which of two parameter
blocks will be used. If 0, the "source input"
parameter block will be used and if 1 the "object
input™ block will be used (corresponding usually
to channels 4 and 2 respectively).

Bit 3 of E if set will force the routine to go
back to the start of the first file in the file
list ("rewind")

On output A and D contain the character read or ETX if the
end of the file is reached
Bits 0,3 and 7 of E are reset
The carry flag is set if the physical end of the
file is reached (the last byte in the last sector
has been read)

Destroys Registers A,D,E and flags

This routine will abort to PIP if disk error 1,6,7,8 or 10
occurs. (See section 3 for an explanation of these numbers).
It may also enable interrupts.

NAME: DSKOUT
ADDRESS: E803
FUNCTION: DISK OUTPUT DRIVER

This routine writes a byte to a disk file. It requires a
parameter block in RAM which is usually set up by a call to
the ASSIGN routine. See entries for ASSIGN (5.5) and DSKOO
(5.26) .

On input D contains the byte to be written
Bit 1 of E determines which of two parameter
blocks will be used. If 0, the "source output"
parameter block will be used and if 1 the "object
output" block will be used (corresponding usually
to channels 5 and 3 respectively).
Bit 3 of E if set will open the file (unless
already open)

D.D. Handbook No. 2.467(82)
Sheet 12 of 47 sheets

Issue 1
31/1/84

5.3

5.4

On output A and D contain the character sent
Bit 0 of E is set
Bits 3 and 7 of E are reset

Destroys Registers A,E and flags

This routine will abort to PIP if disk error 2,3,4,5,6,7,9
or 10 occurs. (See section 3 for an explanation of these
numbers) . It may also enable interrupts.

NAME : CLOSE
ADDRESS: E806
FUNCTION: CLOSE OUTPUT DISK FILE

This routine fills the remainder of the last buffered sector
with NUL characters. It then stores the rest of the file
still in the RAM buffer on the disk and updates the disk
directory to include the file.

On input Bits 0,1 and 2 of E determine the channel in use
Destroys Registers A,B,C,D,E,H,L,IX and flags

This routine will abort to PIP if disk error 5,6 or 10
occurs. (See section 3 for an explanation of these numbers).

NAME: PIP
ADDRESS : E809
FUNCTION: PERIPHERAL INTERCHANGE PROGRAM

This routine allows manipulation of disk files, e.q.
deleting and renaming files, and provides a general means of
transferring data between disk files or drivers. It can
also be used to list an index of disk contents.

A jump or call to this routine has the same effect as E :PI
executed from within the monitor. See section 5 of part 2
of this handbook and the entry for PIPEXT (5.15) in this
section for further details.

This routine will NOT return to the user program. See the
entry for PIPEXT (5.15) for a method of accessing the
commands of PIP without losing control.

D.D. Handbook No. 2.467(82)
Sheet 13 of 47 sheets

Issue 1
31/1/84

5.5

5.6

NAME: ASSIGN
ADDRESS:: E80C
FUNCTION: ASSIGN A CHANNEL TO A DEVICE OR DISK FILE

This routine is called to allocate an I/0 channel to a
device or file whose name is held in RAM. It sets up the
parameter block required by many other routines e.g. DSKIN
or DSKOUT. See entries for DSKI0 (5.25) and DSKOO (5.26)
for further information.

If no device mnemonic is specified, the routine assumes a
disk 0 filename 1is being used. Both resident and user
mnemonics are recognised.

On input D contains the default file extension that will
be used if none is specified
Bits 0,1 and 2 of E determine channel in use
HL points to the first character of the device or
filename string terminated by carriage return.
If this string describes an input disk file, it
must be preserved until the file is no longer
required (unless DSKIO (5.25) is being used in
which case only the first file will be accessed
and the string need not be stored).

On output If the carry flag is reset, the RAM string on

input was blank
If the carry is set:

DE contains the driver routine address allocated
HL. points to the device/filename delimeter in
the string

IX points to the parameter block allocated to
the channel

The zero flag is set if a disk file was
specified

The RAM vector for the I/O channel is set (see
section 4.3 of part 2)

Destroys Registers A,D,E,H,L,IX and flags

This routine will abort to PIP if a specified device does
not exist.

NAME : GETDF
ADDRESS: E80F
FUNCTION: GET A DEVICE/FILENAME

This routine sends a text string to the console output
channel and waits for the operator to type in a filename
and/or device mnemonic. When the RETURN Kkey is pressed,
control passes to the ASSIGN routine above.

On input D contains the default extension to be used if
none is specified by the operator
Bits 0,1 and 2 of E determine the channel in use

D.D. Handbook No. 2.467(82)
Sheet 14 of 47 sheets

Issue 1
31/1/84

5.7

5.8

HL points to the text string to be output
(terminated by an ETX)

The outputs from this routine are the same as for ASSIGN
(5.5).

If the operator presses the ESCAPE key, control will pass to
the monitor and the routine will not return to the calling

program.
This routine calls PTXT (4.2) and STRING (6.1).

NAME : DKINIT
ADDRESS: E821
FUNCTION: DISK SYSTEM INITIALISE

This routine sets flags in the disk RAM buffers that ensure
that the directories will be re-read from the disk when next
required. It also aborts any open output files but does not
update the directories so such files are lost.

Destroys Register A

NAME : WRITE
ADDRESS: E824
FUNCTION: WRITE CONTIGUOUS LINKED SECTORS FROM RAM

This routine writes a block of RAM directly onto the disk in
Zelda format (i.e. with links on the end of each sector) -
see Appendix 2.

On input A contains the number of sectors to be written
DE points to the source RAM start address
HL contains the start sector number (in the range

0 to 2001)
(IX-9) holds the ASCII disk drive number ("0" or
lllll)

On output A contains 0
DE = DE +126* (number of sectors written)
HL contains the last sector number written + 1

Destroys Registers A,D,E,H,L and flags

The disks used on the Zelda system have 77 tracks of 26

sectors each. 1In the notation used here, the sectors are
numbered from 0 (track 0, sector 1) to 2001 (track 76,

sector 26), see Appendix 2.

Note this routine only writes 126*A + 2 bytes of RAM onto
the disk as link information is added which uses two bytes
per sector. The last two bytes of the 1last sector are
written with the data in the RAM and not with a calculated

D.D. Handbook No. 2.467(82)
Sheet 15 of 47 sheets

Issue 1
31/1/84

5.9

link. If a Zelda format file is being written, these bytes
should both contain FF Hex or the file written will not
appear to have a legal end.

This routine also does not examine the disk directory and
will write over another file if it occupies the sectors
called for. The RAM being written is temporarily modified
and the routine will leave interrupts enabled.

If this routine is called with A = 1, a full 128 bytes of
data will be written to the disk. Thus by repeated calls to
this routine, each time with a different value in HL, it is
possible to write a file which does not have 1links on the
end of each sector (for example a CP/M (r) disk format).
Since DE is set to DE + 126 by this routine, it is necessary
to increment DE twice between calls to achieve the desired
result.

This routine will abort to PIP if a "DISK FAIL - " error
occurs (e.g. NOT READY, TRACK/SECTOR NOT FOUND, etc.).

NAME : READ
ADDRESS: E827
FUNCTION: READ DISK TO RAM

This routine reads Zelda format linked sectors into RAM.
The maximum number of sectors to be read may be specified
and the routine will return with an illegal sector address
(FFxx Hex) if the end of the file is reached.

On input A contains the maximum number of sectors to be
read
DE points to first position of destination RAM
HL contains start sector number (in range 0 to
2001 - see Appendix 2)

On output A contains the number of sectors not read (if end
of file found)
DE points to next RAM byte to be used
HL contains the next sector address in the file
{FFxx Hex if end of file found)

Destroys Registers A,D,E,H,L and flags

As well as being returned in HL, the link bytes in the last
sector read are left in the destination RAM. As a result,
n*126+2 bvtes of RAM are affected by this routine, where n
is the number of sectors read.

This routine can be used to read a disk file that consists
of contiguous non-linked sectors. By calling the routine
with A =1, a full 128 bytes of data are read. If this
process is repeated, and DE 1is incremented twice between
each call, the destination RAM will contain the data as

required.

D.D. Handbook No. 2.467(82)
Sheet 16 of 47 sheets

Issue 1
31/1/84

5.10

5.11

5.12

The routine returns with interrupts enabled and will abort
to PIP if a "DISK FAIL - " error occurs (e.g. NOT READY,
TRACK/SECTOR NOT FOUND, etc.).

NAME : BINBCD
ADDRESS: E82D
FUNCTION: BINARY TO BCD CONVERTER

This routine takes a binary number in the HL register pair
and returns with a packed BCD number in the range 0 to 9999
in the DE register pair.

On input HL contains the binary number to be converted
On output DE contains the BCD representation of the number

Destroys Registers A,B,C,D,E,H,L and flags

NAME : STORE
ADDRESS : E833
FUNCTION: STORE DIRECTORY

This routine checks the specified directory in RAM. If
valid, it will write it onto the relevant disk and check it
can read it again. If necessary, this process will be
repeated up to ten times before the routine aborts to PIP
with an error message — DIRECTORY ERROR. A DISK FAIL error

message may occur.

On input (IX-9) contains the relevant ASCII disk drive
number ("0" or "1")

Destroys Registers A,B,C,D,E,H,L and flags

This routine uses WRITE (5.8) and leaves interrupts enabled.

NAME : GETDIR
ADDRESS: E836
FUNCTION: GET DIRECTORY

This routine checks the directory in RAM and if it finds an
error will attempt to read a new directory from the disk in
the specified drive.

On input (IX-9) contains the relevant disk drive number
(Il0ll or Hl")

On output The disk directory stored in RAM is valid
Destroys Register A and flags

Note that a disk directory is marked invalid by Zelda if the

D.D. Handbook No. 2.467(82)
Sheet 17 of 47 sheets

Issue 1
31/1/84

5.13

5.14

"ready" signal from the associated disk drive disappears.
This is how the system detects a disk has been changed.

This routine will abort to PIP if disk error 6,7 or 10
occurs. (See section 3 for an explanation of these numbers).

NAME : FIND
ADDRESS : E839
FUNCTION: FIND FILENAME IN DIRECTORY

This routine searches the current directory for a specified
filename and returns with the sector address found. It must
be preceded by a call to the GETDIR routine (5.12) to
establish which directory is in use.

On input HL points to the first character of the filename
to be found (stored as a 6 character filename + 1
character extension without a delimeter)

On output The zero flag is reset if the file is not found.
If the zero flag is set:
HL contains the sector address found (0 - 2001),
see Appendix 2
DE-9 points to the directory entry of the file

Destroys Registers A,D,E,H,L and flags

NAME : FIT
ADDRESS ¢ E83C
FUNCTION: ALLOCATE SPARE AREAS OF DISK

This routine allocates disk storage for a file being
written. It scans the directory for the first blank entry
and finds the number of sectors available before the next
file. The number of sectors allocated will be in the range 1
to 26 as the routine only examines one track at a time. The
directory in RAM is updated but not written to the disk.

On input HL points to the first character of the filename
(stored as a 6 character filename + 1 character
extension without a delimeter)

On output HL contains the sector number stored in the

directory entry
DE contains the next sector free to be written
A contains the number of free sectors allocated

Destroys Registers A,D,E,H,L and flags

D.D. Handbook No. 2.467(82)
Sheet 18 of 47 sheets

Issue 1
31/1/84

5.15

5.16

5.17

NAME : PIPEXT
ADDRESS: E83F
FUNCTION: PERIPHERAL INTERCHANGE PROGRAM EXTERNAL CALL

This routine allows the user to access the commands of PIP
(5.4 and Part 2) without control being lost unless an error
is found. The string to be interpreted is not typed in by
the user but is stored before this routine is called.

On input HL points to command string (stored as it would
be typed in in PIP and terminated by a carriage
return)

Destroys Registers A,B,C,D,E,H,L,A”,IX and both sets of
flags

This routine will abort to PIP if any disk error or command
syntax error occurs.

NAME: PREP
ADDRESS: E842
FUNCTION: READY DISK DRIVE

This routine selects and turns on the relevant disk drive
and then waits for up to 2.5 seconds for the "ready" signal
to appear. If the drive fails to become ready after this
time, the routine will abort to PIP and control will be
lost.

On input (IX-9) hold the ASCII disk drive number ("0" or
lllll)

Destroys Register A and flags

NAME: RETRY

ADDRESS: E845

FUNCTION: PREPARE FOR ANOTHER ATTEMPT TO READ TRACK/SECTOR
HEADER

This routine is closely associated with SEEK (5.18) and
effectively provides a way for the user to position the disk
drive read/write head using track/sector information rather
than sector number.

On input A contains the current error status
B contains the number of tries left + 1 (i.e. 3
means 2 tries)
contains the track number required (0 - 76)
contains the sector number required (1 - 26)

0 if the drive head was loaded or 4 if not
B-1

On output

o > e
nn

D.D. Handbook No. 2.467(82)
Sheet 19 of 47 sheets

Issue 1
31/1/84

5.18

5.19

Destroys Registers A,B and flags

If the number of tries specified is exceeded, an error
message depending on the contents of A will be sent to the
console output channel and command will pass to PIP. The
message will be :-

DISK n FAIL - (caption)

with the caption depending on which bit(s) of the A register
is/are set as follows :-

Bit 7 NOT READY
Bit 6 WRITE PROTECTED
Bit 4 TRACK/SECTOR NOT FOUND
Bit 3 CRC ERROR
Bit 2 LOST DATA
NAME : SEEK

ADDRESS: E848
FUNCTION: CALCULATE TRACK/SECTOR AND MOVE HEAD

This routine is closely associated with RETRY (5.17) and is
used to position the disk drive read/write head using the
sector number.

On input HL contains sector number (0 - 2001)

On output A = 0 if the drive head was loaded or 4 if not
B contains (11 - number of tries needed)
H contains track number
L contains sector number

Destroys Registers A,B,H,L and flags

If the sector number called for is out of range, the routine
will abort to PIP with an "ILLEGAL TRACK" error message. If
the number of retries is exceeded, the message "DISK
FAIL - TRACK/SECTOR NOT FOUND" will be displayed and command
will again pass to PIP.

NAME: PBCD
ADDRESS: E84B
FUNCTION: PRINT BCD NUMBER

This routine sends to the console output channel a four
digit BCD number with 1leading zeros blanked (replaced by
spaces) .

On input HL contains the number to be printed (packed BCD
in the range 0 - 9999)

Destroys Registers A,B,D,E and flags

D.D. Handbook No. 2.467(82)
Sheet 20 of 47 sheets

Issue 1
31/1/84

5.20

5.21

NAME: DSKACT
ADDRESS:: E84E
FUNCIION: SEND COMMAND TO DISK CONTROLLER

This routine sends a command to the FD1771 disk controller
and, after a short delay, loops until the command has been
executed.

On input A contains the command to be sent to the FD1771
On output A contains the status from the FD1771
Destroys Register A and flags

For a full list of commands available, see the FD1771 data
sheet.

NAME: DELETE
ADDRESS: E851
FUNCTION: DELETE FILE ENTRY

This routine 1is used to remove an entry in the currently
selected directory and will compress the directory if
possible by joining together empty entries (see Appendix 2).
It must have been preceded by a call to GETDIR (5.12) to
determine which disk directory is in use. When a disk file
is written, the directory may contain more than one entry
associated with the file because of the way the FIT routine
(5.14) allocates space. A "continuation" entry is stored
with bit 7 of the first character of the filename set.
Because this routine only removes one directory entry, it
may not remove a file completely from a directory; an
example of how to ensure this is given in section 8 of this
document.

On input HL-9 points to the directory entry to be removed
On output HL = HL - 9
The directory with the entry removed and
compressed if possible

Destroys Registers A,H,L and flags

To remove an entire file from the directory, use the code
given in example 8.5 of this handbook.

See entries for ASSIGN (5.5), GETDIR (5.12), FIND (5.13) and
FINDL (5.22).

D.D. Handbook No. 2.467(82)
Sheet 21 of 47 sheets

Issue 1
31/1/84

5.22

5.23

5.24

NAME : FINDL
ADDRESS: E854
FUNCTION: TFIND ENTRY IN DIRECTORY

This routine performs the same task as FIND (5.13) except
that :-

i) It uses BC instead of HL to point to the filename,
ii) If it cannot find the filename in the directory, it
will set bit 7 of the name and try again.

Outputs are as for FIND (5.13) with the addition that bit 7
of the first character of the filename in RAM may be set.

The routine is used to find entries in a directory when
deleting and renaming files (see DELETE (5.21)).

NAME : FINDSR
ADDRESS: E857
FUNCTION: FIND SECTOR ADDRESS

This routine searches the current directory for an entry
which has a specified sector number in it. If it finds the
entry, it will return pointing to the next directory entry
and will reset the carry flag. The routine must be preceded
by a call to GETDIR (5.12) to specify the directory and
ensure it is valid. NOTE: In version 8.1 of the DOS, FINDSR
finds the FIRST entry in the directory containing the
specified sector number. In version 8.2 and later versions
it finds the LAST entry containing that sector number.
Normally there will be only one entry containing a given
sector number so this difference is unimportant.

On input DE contains the sector number looked for

On output HL-9 points to the directory entry which has the
sector number in it
The carry flag is reset if the sector is found,

otherwise reset

Destroys Registers A,B,C,H,L and flags

NAME : LENGTH
ADDRESS: E85A
FUNCTION: COMPUTE LENGTH OF BLOCK

This routine calculates the length in sectors allocated to a
directory entry.

On input HL points to the start of the directory entry

On output DE contains the number of sectors allocated

D.D. Handbook No. 2.467(82)
Sheet 22 of 47 sheets

Issue 1
31/1/84

5.25

Destroys Registers D,E and flags

NAME: DSKIO
ADDRESS: E85D
FUNCTION: DISK INPUT

This routine performs the same function as DSKIN (5.1) but
the user has to set up the parameter block required. This
may be useful when adding an extra disk channel for reading.
The DSKIN routine is the usual method of reading from a disk
file (accessed via RDCHR (4.4)).

With this routine it is only possible to read the first file
in a list; DSKIN (5.1) must be used to read from
concatenated files.

On input Bit 3 of E if set will force routine to go back
to start of file
IX points to the file”s parameter block

Outputs are as for DSKIN (5.1) except that bit 0 of E is not
reset.

A description of the format of the parameter block required
follows. A user who wishes to set up another disk input
channel is strongly advised to create this block by using a
call to ASSIGN (5.5) in the normal way, and then to copy the
block it produces to another area of RAM. This can, of
course, only be done if a spare read channel exists that is
to be opened later. Only one filename is allowed when using
this routine, rather than a 1list, so the text string
pointers from (IX-14) to (IX-10) are not used. They are
listed here for completeness and are used by DSKIN (5.1).

ADDRESS DESCRIPTION

(IX) to (IX+126*(SECTORS)+l1l) DATA BUFFER

(IX-1) BUFFER POINTER

(IX-2) FILENAME EXTENSION

(IX-8) to (IX-3) FILENAME

(IX-9) DISK DRIVE NUMBER

(IX-11), (IX-10) TEXT STRING POINTER (current
position in filename list)

(IX-13), (IX-12) TEXT STRING START ADDRESS
(start of filename list)

(IX-14) DEFAULT EXTENSION

(IX-15) NUMBER OF SECTORS IN BUFFER

In the current Zelda Disk Operating System (Version 8.1),
SECTORS = 3 but this wvalue may change later; it is unlikely
to be greater than nine in any future system. (The Version
number is held at E867 Hex).

This routine will abort to PIP if disk error 1,6,7 or 10

D.D. Handbook No. 2.467(82)
Sheet 23 of 47 sheets

Issue 1
31/1/84

5.26

occurs. (See section 3 for an explanation of these
numbers). It will also leave interrupts enabled if the disk
has to be accessed to refill the buffer.

NAME: DSKOO0
ADDRESS: E860
FUNCTION: DISK OUTPUT

This routine performs the same function as DSKOUT (5.2) but
the user has to set up the parameter block required. This
may be useful when using an extra disk channel for writing.
The DSKOUT routine is the normal method of writing to a disk
file (accessed via WRCHR (4.5)).

On input D contains the character to be written
Bit 3 of E if set will open the file
IX points to the file“s parameter block

Outputs are as per DSKOUT (5.2) except that bit 0 of E is
not set.

The parameter block for an output file is the same as that
for an input file (see DSKI0O (5.25)) EXCEPT for the
following :-

ADDRESS DESCRIPTION
(IX-11), (IX-10) FILE OPEN FLAG (set to. 0l1,FE
if file is open)
(IX~13), (IX-12) SECTOR ADDRESS IN DIRECTORY OF
LAST BLOCK WRITTEN
(IX-14) NUMBER OF CONSECUTIVE SECTORS
LEFT

These parameters are not usually under user control and are
set by a call to FIT (5.14) from within DSKOO whenever the
RAM buffer is written to the disk.

No direct call has been provided to close a file that does
not use one of the existing disk output channels. However,
a call to an address five bytes from the start of the CLOSE
routine will enable the user to do this as follows :-

LD HL, (CLOSE+l) ;FIND WHERE CLOSE IS

LD DE,5
ADD HL,DE
Jp (HL)

with IX addressing the file”s parameter block.

This routine will abort to PIP if disk error 2,3,4,5,6,7,9
or 10 occurs. (See section 3 for an explanation of these
numbers). It will also 1leave interrupts enabled if the
buffer £ills and the disk is written to.

D.D. Handbook No. 2.467(82)
Sheet 24 of 47 sheets

Issue 1
31/1/84

5.27

NAME : SETIX
ADDRESS: E863
FUNCTION: SET IX FOR CHANNEL

This routine 1loads IX according to channel information
contained in the E register. It enables the user to find
the parameter blocks set up by ASSIGN (5.5) which may be
useful when setting up an extra disk I/0 channel (see
entries for DSKIO (5.25) and DSKOO (5.26)).

On input Bits 0,1 of E determine channel in use

On output IX points to the RAM area that the Disk Operating
System allocates to that channel.

Destroys Register IX and flags

D.D. Handbook No. 2.467(82)
Sheet 25 of 47 sheets

Issue 1
31/1/84

6.

OTHER CALLABLE ROUTINES AND DRIVERS

6.1

NAME :
ADDRESS:
FUNCTION:

STRING
D95C
INPUT TEXT LINE

This routine waits for the user to type in a line of text

terminated

by a carriage return. The characters entered are

stored in a RAM buffer whose start address is chosen by the

user.
On input

On output

Destroys

HL points to start of RAM line buffer

HL points to first character entered (i.e. is
unaltered)

Registers A,B,C,D,E and flags

No count is made of the number of characters entered and the
routine will continue to store them until <RETURN> is
pressed. The following codes have special meanings :-

<ESC>

<BACKSPACE>

<RETURN>

<DELETE>

<CTRL/U>

<TAB>

Pass control to the monitor program and do not
return to the calling program

Delete the previous character on the screen and
re-use the 1location where it is stored in the
RAM buffer

Store OD Hex in the RAM buffer and return to the
calling program

Print a "\" on the screen and re-use the
previous location in the RAM buffer. The "\" is
not stored

Return to the calling program immediately with a
carriage return stored in the first RAM buffer
location (i.e. a zero length line)

Print between 1 and 8 spaces until the cursor is
positioned at one of the preset tab positions
(8,16,24,32, etc.). Only the TAB character is
stored in the buffer.

All other codes are echoed to the screen and stored.

D.D. Handbook No. 2.467(82)
Sheet 26 of 47 sheets

Issue 1
31/1/84

6.2

6.3

6.4

NAME: LPTXT
ADDRESS: DDEE
FUNCTION: PRINT TEXT ON VDU

A call to this routine is equivalent to :-

LD E,1
CALL PTXT

See entry for PTXT (4.2) for more details.

NAME ¢ INA
ADDRESS: DEE1l
FUNCTION: RAM DRIVER FOR EDITOR

This driver can be used to read from the RAM Editor buffer
with 1line numbers stripped off. The buffer starts at 0000
and is terminated by an ETX after the last record stored.
Each record is stored with a carriage return terminator but
no line feed. This driver may be used by adding its address
as a user mnemonic (see Appendix 4 of part 2) and by copying
from it in PIP (see section 5 of part 2). This ensures the
pointers are correctly set as PIP will set the initialize
flag (bit 3 of E register) when the routine is first called.

On input Bit 3 of E if set will force the driver to start
from the beginning of the buffer.

On output A and D contain the character read Bits 3 and 7
of E are reset

Destroys Registers A,D and E

NAME : INB
ADDRESS: DF05
FUNCTION: RAM DRIVER (READ)

This driver and its companion OUTB (6.5) may be used to read
and write data to and from a specific area of RAM as
specified by the contents of ENDC (see section 7).

The routine reads a character from the RAM area and
increments a pointer to the next 1location from which to
read data. If bit 3 of the E register is set (initialize),
the routine will read the first location in the buffer.

On input Bit 3 of E if set will force the driver to start
from the beginning of the buffer

On output A and D contain the character read
Bits 3 and 7 of E are reset
The pointer is incremented

D.D. Handbook No. 2.467(82)
Sheet 27 of 47 sheets

Issue 1
31/1/84

6.5

Destroys Registers A,D,E and flags

The RAM buffer used is from (ENDC) upwards (see section 7).
The ENDC pointer is also used by the 1linking 1loader and
assembler and must be set to a sensible value whenever this
driver is no longer used - see the warning notice in section
8.4 of part 2 of the handbook.

NAME: OUTB
ADDRESS: DF1A
FUNCTION: RAM DRIVER (WRITE)

This driver and its companion INB (6.4) may be used to write
and read data from and to a specific area of RAM specified
by the contents of ENDC (see section 7).

The routine outputs a character to the RAM area and
increments a pointer to the next location to which data will
be written. If bit 3 of the E register is set (initialize),
the routine will write to the first location in the buffer.

On input D contains the character to be written
Bit 3 of E if set will cause the routine to write
to the first location in the buffer.

On output Data is stored in RAM and the pointer is
incremented
Bits 3 and 7 of E are reset.

Destroys Registers A,D,E and flags

The RAM buffer used is from (ENDC) upwards (see section 7).
The ENDC pointer is also used by the linking loader and
assembler and must be set to a sensible value whenever this
driver is no longer used - see the warning notice in section
8.4 of part 2 of the handbook.

D.D. Handbook No. 2.467(82)
Sheet 28 of 47 sheets

Issue 1
31/1/84

7.

SYSTEM RAM MAP

Reference
program are being distinguished. See Appendix 1 for a description
of what constitutes a "language". See also the notes at the end
of this section to explain "HIMEM".

is made

ADDRESS LABEL
0000 - HIMEM-1
HIMEM- 7FFF
8000 - 9FFF
AQ00 - A7FF
A800 - BFTF
C000 - FBFF
FCO0 - FCFF
FDOO - FDFF
FEOO - FEFF
FF00 - FF03
FF04 - FFO05 ENDC
FF06 - FF07 MEMFLG
FF08 - FF13
FF14 - FF15 OPR1l
FF16 - FF17 OPR2
FF18 - FF19 OPR3
FF1A OPFLG
FF1B NXTCHR
FF1C CMD
FF1D - FFlE
FF1F - FF20 RTMP
FF2l1 - FF22 HOME
FF23
FF24 - FF25 ENDMEM
FF26
FF27 - FF28 :CI
FF29 - Fr2a :CO
FF2B - FF2C :0I
FF2D - FF2E :
FF2F - FF30 :SI
FF31 - IF32 :SO
FF33 - FF8F
FF90 - FF91 POUTB
FF92 - FF93 PINB
FF94 - FF95 PINA
FF96 - FFBO
FFB1
FFB2 - FFES
FFE6 - FFFF

in this section to a "language" when types of

"Language" and "language" workspace
Operating System workspace - do not use
No ROM or RAM

VDU RAM

No ROM or RAM

Operating system PROM

Device driver routines. The following drivers
supplied on the system disk reside in this
area :- RXnnnn, TXnnnn, TOnnnn, PRINT, CPRINT,
DPRINT.

User drivers or monitor extensions. This area
should not be used as "language" workspace.

System workspace (used for example by MON,
SUBMIT and SPOOL) - do not use

Editor and Assembler workspace - do not use
Buffer start for INB (6.4) and OUTB (6.5)
Auto mapping indicator - see App. 6 of part 2
Monitor storage - do not use

1st operand value produced by SCAN (4.3)
2nd operand value produced by SCAN (4.3)
3rd operand value produced by SCAN (4.3)
Number of operands returned by SCAN (4.3)
Terminator entered into SCAN (4.3)

Last monitor command entered - see ex. 8.4
Monitor storage - do not use

Monitor vector point - see ex. 8.4

"Home" address of cursor - see ex. 8.3

VDU ESCape and SI/SO status

Last contiguous RAM address

VP: storage - do not use

Address of console input driver

Address of console output driver

Address of object input driver

Address of object output driver

Address of source input driver

Address of source output driver

Mnemonics and stack - see App. 4 of part 2
Pointer for OUTB RAM driver (6.5)

Pointer for INB RAM driver (6.4)

Pointer for INA RAM driver (6.3)

"Language" workspace - Appendix 1

STRING workspace - do not use

Monitor stack - do not use

User”’s register storage - modified by monitor

D.D. Handbook No. 2.467(82)
Sheet 29 of 47 sheets

Issue 1
31/1/84

In the Disk Operating System PROM, the 1location E87C (Hex)
contains the value of HIMEM. In Version 8.1, for a 32K Zelda,
this is 6C53 (Hex).

This PROM also contains two other stored values which address
useful variables. These are :-

1) INDEX This value 1is stored at E878 (Hex) and is the
address of the RAM location at which 1is stored
the address of the first byte of the current disk
directory in RAM. In Operating System Version
8.1, The INDEX location contains 79CA (Hex).

2) SELECT This value is stored at E87A (Hex) and is the
address of the RAM location which holds a mimic
of the value sent to the disk "power-up" port.
The bits have the following meanings :-

Bit O If 0, drive 0 1is selected; if 1,
drive 1 is selected.

Bit 1 If 1, the mains and 24v to drive 0
are switched on.

Bit 2 If 1, the mains and 24v to drive 1

are switched on.

D.D. Handbook No. 2.467(82)
Sheet 30 of 47 sheets

Issue 1
31/1/84

8.

EXAMPLES OF USE OF ROUTINES

8.1

e e w8 wo

This example demonstrates the use of ASSIGN
and GETDF to set up input and output drivers

:This program removes any character with bit 7
;set from a disk file.

i
ETX
CR
CRLF

RENTRY
PTXT
RDCHR
WRCHR
CLOSE
ASSIGN
GETDF
GETDIR
FIND
STACK

REMOV7 :

LOOP:

EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

LD
LD
LD
LD
CALL
JP
CALL
PUSH
LD
JR
LD
LD
LD
CALL
POP
LD
LD
LDIR
EX
LD
LD
LD
LD
CALL
CALL
PUSH
LD
JR
LD
EXX
LD
CALL

3
ODH
0AODH

OE11DH
OE3C7H
0E522H
OES527H
OE806H
O0E8OCH
OE8OFH
OE836H
0E839H

OFF90H

SP,STACK
HL,SOURCE
E,2

D,”s”
GETDF

NC, RENTRY
FILE

HL

HL ,NTXST
NZ,ERROR
HL,DESTN
E,3

D,”s”
GETDF

HL
DE,BUFFER
BC,6

DE,HL
(HL) ,CR
HL ,BUFFER
D,“N”

E,3
NC,ASSIGN
FILE

HL

HL, ALRXST
Z ,ERROR
E,3+1000B

E,2+1000B
RDCHR

;END OF TEXT
; CARRIAGE RETURN
;CR, LF

; INITIALISE STACK POINTER
:USER PROMPT

; INPUT CHANNEL NUMBER
; DEFAULT EXTENSION
sASSIGN INPUT CHANNEL
;EXIT IF NO INPUT
;TEST FOR FILE

;SAVE FOR LATER

s ERROR MESSAGE
;ABANDON IF NOT THERE
;USER PROMPT

;OUTPUT CHANNEL NUMBER
;DEFAULT EXTENSION
7ASSIGN OUTPUT CHANNEL

; TEMPORARY STORE
;COPY FILENAME

;s TERMINATE WITH CR
; DEFAULT EXTENSION

;USED IF NO OUTPUT
;OUTPUT FILE=INPUT FILE.N

;ERROR MESSAGE
;FILE ALREADY EXISTS
; INITIAL OUTPUT CHANNEL

; INITIAL INPUT CHANNEL
; READ BYTE

D.D. Handbook No. 2.467(82)
Sheet 31 of 47 sheets

Issue 1
31/1/84

EOFILE:
H
ERROR:

WRLOOP:

JR
BIT
JR
EXX
LD
CALL
EXX
JR
EXX
CALL
JP

LD
CALL
pPOP
LD
LD
CALL
INC
DINZ
LD
CALL
LD
CALL
JP

C,ECFILE
7,D
NZ ,LOOP

D,A
WRCHR

LOOP

CLOSE
RENTRY

E,1
PTXT
HL
B,6

D, (HL)
WRCHR
HL
WRLOOP
D,”.”
WRCHR
D, (HL)
WRCHR
RENTRY

;END OF FILE

;SKIP IF BIT 7 SET

;WRITE BYTE

;CLOSE FILE JUST WRITTEN
;RETURN TO MONITOR

; CONSOLE OUTPUT CHANNEL
; PRINT ERROR MESSAGE

;s FILENAME POINTER

; CHARACTER COUNT

;PRINT FILENAME

;PRINT "."

;s PRINT EXTENSION

FILE - This routine points HL at the compacted filename
and loads the relevant directory into RAM.
is set if the file looked for exists.

Inputs: IX and Z-flag as output from ASSIGN/GETDF

The 2 flag

Outputs: HL addresses compacted filename
Z-flag set if file exists on disk
Destroys: A,D,E,H,L,F

P ~¢ So Se Ne “e we we we wo wo

ILE: PUSH AF
CALL Z,GETDIR
POP AF
PUSH IX
POP HL
LD DE,-8
ADD HL,DE
PUSH HL
CALL Z,FIND
POP HL
RET

+Z FLAG SET IF DISK

; POINT TO FILENAME

:IF DISK FILE, CHECK TO
;SEE IF IT ALREADY EXISTS

’

SOURCE: DEFW CRLF

DEFM “This program removes all characters with”
DEFM “ bit 7 set.”
DEFW CRLF

DEFM “Source from ?
DEFB ETX

DEFM “Destination to ?
DEFB ETX

DEFM “I cannot find ~
DEFB ETX

ALRXST: DEFM “I can already find “

4

rd

DESTN:

NTXST:

D.D. Handbook No. 2.467(82)
Sheet 32 of 47 sheets

Issue 1
31/1/84

8.2

DEFB

ETX

4
BUFFER: DEFS 7

’

;This example shows
;routines described

’
LPTXT
RENTRY
SCAN
PADDO
’
ETX
CR
STOP
CARAT
CRLF

1

OPR1
OPR2
OPR3
OPFLG
NXTCHR
STACK

r
MONDEM:
GETOPR:
GETOP1:

TERMOK :

END

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

LD
LD
CALL
CALL
LD
Cp
JP
Cp
JR
Ccp
LD
JR
LD
OR
LD
JR
LD
PUSH
CALL
LD
CALL
POP
DEC
JP
PUSH
LD
CALL
POP
DEC
JP

REMOV7

ODDEEH
OE11DH
OE414H
0E604H

3

ODH
2EH
5EH
OAODH

OFF14H
OPR1+2
OPR2+2
OPR3+2
OPFLG+1
OFF90H

SP,STACK
HL, PROMPT
LPTXT
SCAN

A, (NXTCHR)
STOP

2 ,RENTRY
CR

2 ,TERMOK
CARAT

HL, ILTERM
NZ,GETOP1l
A, (OPFLG)
A
HL,SOME
Z,GETOP1
HL, ENTERD
AF

LPTXT

HL, (OPR1)
PADDO

AF

A

2 ,RENTRY
AF

HL, (OPR2)
PADDO

AF

A

Z ,RENTRY

the use of some of the monitor
in section 4.

;PROMPT USER FOR INPUT
:PRINT PROMPT

:ACCEPT INPUT

:CHECK TERMINATOR
;ABORT ON “.”

;TRY AGAIN IF NO GOOD
;TEST FOR ZERO

;s REQUEST SOMETHING

; PRINT ANY VALUES FOUND
;FIRST VALUE

;EXIT IF ONE ONLY

;SECOND VALUE

;EXIT IF TWO ONLY

D.D. Handbook No. 2.467(82)
Sheet 33 of 47 sheets

Issue 1
31/1/84

1)

2)

3)

4)

LD HL, (OPR3)

CALL PADDO ;s THIRD VALUE
Jp RENTRY ;EXIT IF THREE
PROMPT: DEFW CRLF
DEFM “Please enter up to three operands :”
DEFB ETX

SOME: DEFW CRLF

»

DEFM “Please enter something :
DEFB ETX

ILTERM: DEFW CRLF

DEFM “Illegal character - please try again :”
DEFB ETX

ENTERD: DEFW CRLF

~-e

DEFM “You entered - ~
DEFB ETX

END MONDEM

In this example, note the following :-

The program loads the stack pointer to ensure that a
valid RAM area is used for the stack. This means that
this routine cannot be used as a callable subroutine.

The user is prompted with a text string rather than a
simple prompt character. This makes it easier for the
operator to understand what is required. The values
typed by the user are then stored.

A check is made to see if the user has typed in any
illegal characters which could cause a wrong value to be
returned. This might be very important if a copying
command were used, as a wrong value could wipe out the
memory !

All of the callable routines are referenced by 1labels,
not by addresses. This helps understanding of the
program and makes it easier to alter if the address of
any of the called routines changes.

D.D. Handbook No. 2.467(82)
Sheet 34 of 47 sheets

Issue 1
31/1/84

8.3 ;This example shows how to reset the
;HOME screen address to A0Q00 Hex so the
;:VDU screen may be used in a memory mapped
;mode. (See section 8.3 of part 1).

FF EQU OCH ;HOME CURSOR
CAN EQU 18H ; CLEAR SCREEN
CRTCS EQU 84H ;6845 REG. SELECT PORT

CRICD EQU CRTCS+1 ;6845 DATA PORT

VDURAM EQU OAO000H
RENTRY EQU OE11DH
WRCHR EQU 0E527H
HOME EQU OFF21H
STACK EQU OFF90H
SETVDU: LD SP,STACK
LD A,l12 ;SET 6845 HOME
ouT (CRTCS) ,A ;ADDRESS TO 0
XOR A
ouT (CRTCD) ,A
LD A,13
OuT (CRTCS),A
XOR A
ouT (CRTCD),A
LD HL,VDURAM
LD (HOME) ,HL ;UPDATE RAM COPY

LD E,1001B ;SEND FF + CAN
LD D,FF ;TO CLEAR SCREEN
CALL WRCHR
Lp D,CAN
CALL WRCHR
JP RENTRY
’
END SETVDU

D.D. Handbook No. 2.467(82)
Sheet 35 of 47 sheets

Issue 1
31/1/84

8.4

:This example shows how to add a new monitor

s command.

I <RET>

WO MO NE MO MO NG NP NP WO NP WO WO NP N0 w0 “e w@

&5
GE:

’
LPTXT
RENTRY
GETDF
READ
GETDIR
FIND

i
OPR1
OPR2

OPR3
OPFLG

START:

ICMD1:

I NNNN <RET>

I NNNN,SSSS <RET>

I NNNN,SSSS,MM <RET>

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

ORG

LD
LD
XOR
SBC
JpP
ADD
LD
LD
JP

LD
Ccp
JR
LD
JP

LD
LD
cp
JR

The "I" command works as follows :-

Loads a named file to RAM
from 0000 onwards

Loads a named file to RAM
from NNNN onwards

Loads linked sectors to RAM

from NNNN onwards and starting

from sector SSSS.

Reading

continues until EOF or 256
sectors have been read

Same as above except MM gives

the maximum number of sectors
that will be read (modulo 256)

3
OAODH

ODDEEH
OE11DH
OE8OFH
OE827H
OE836H
0E839H

OFF14H
OFF16H
OFF18H
OFF1AH
OFF1CH
OFF1FH

OFDOOH

HL, (RTMP)
DE,START
A

HL,DE

Z ,RENTRY
HL,DE
(JUMP) ,HL
(RTMP) ,DE
RENTRY

A, (CMD)

I
Z,ICMDL
HL, (JUMP)
(HL)

IX,DEFDK+9
A, (OPFLG)
2
NC,NONAME

;FIND PRESENT JUMP
;ALREADY EXECUTED ?
;QUIT IF SO

;PASS TO EXISTING ADDRESS
;WHEN DONE. ADD NEW ADDRESS

7 CORRECT COMMAND ?
;CONTINUE IF SO

;ABANDON IF NOT

;SET DEFAULT DRIVE
;HOW MANY OPERANDS ?

D.D. Handbook No. 2.467 (82)
Sheet 36 of 47 sheets

Issue 1
31/1/84

1)

LD E,10 ; :OI CHANNEL

LD D,’s” ; DEFAULT EXTENSION
LD HL,RDFROM

CALL GETDF ;ACCEPT FILENAME

LD HL, DKONLY

JR NZ,PTEND

CALL GETDIR

PUSH IX ;s POINT HL AT FILENAME
POP HL

LD DE,-8

ADD HL,DE

CALL FIND ¢:DOES FILE EXIST ?

LD (OPR2) ,HL :STORE START SECTOR IF SO
LD HL ,NTFND

JR NZ,PTEND

NONAME: LD HL, (OPR2) : START SECTOR

LD DE,(OPR1) ;DESTINATION ADDRESS
LD A, (OPR3) ;NUMBER OF SECTORS
CALL READ

LD HL,DONE

PTEND: CALL LPTXT

Jp RENTRY

RDFROM: DEFM “Read from:

DEFB ETX

DKONLY: DEFM “Disk files only.”

DEFW CRLF
DEFB ETX

NTFND: DEFM “File not found.”

DEFW CRLF
DEFB ETX

DONE: DEFM “Done.”

DEFW CRLF
DEFB ETX

DEFDK: DEFB “0° ;DEFAULT DISK DRIVE
JUMP: DEFS 2 sMODIFIED JUMP

’

.
4

END ICMD s SPECIFY EXECUTE ADDRESS

In this example, note the following :-

The first part of this program is executed once and
installs the monitor extension so that the "I" command
will subsequently be recognised. It modifies the
contents of the vector stored at RTMP. This wvector is
the address to which the monitor jumps prior to
processing its inbuilt commands. If the monitor
extension does not recognize the command letter, it must
jump to the address previously stored in RTMP. The
program stores this previous vector in RAM at the JUMP
location (at the end of the program). To avoid the
routine destroying the contents of JUMP if it is
executed twice, a check is made to see if RTMP already
contains the address of START (the beginning of the new
command interpreter) and will not alter the contents of

D.D. Handbook No. 2.467(82)
Sheet 37 of 47 sheets

Issue 1

31/1/84
2)
3)
4)
5)
8.5

JUMP again if it does.

Each time a monitor command is issued, the program
examines the command letter and will jump back to the
rest of the monitor processing code via the JUMP vector
if the new command is not recognised.

If the new command is recognised the number of operands
entered (see example 8.2) is checked to see which of the
options listed at the beginning of the example is to be
used. If a disk file name is to be given, the routine
first checks that the file exists before trying to read
it.

Once the new command has been executed, the routine
jumps directly to the monitor restart point. This is
done so that a command letter which has already been
used can be redefined and the new definition will have
priority.

For more details of the routines called by this program,
see the relevant entries in sections 4 and 5 of this
document. Section 7 gives a brief description of the
variable stores OPRl, OPR2 etc.

;This example gives the code required to
;delete a file completely from a disk
;directory. (See DELETE (5.21)).

o
’

LD HL,FILNAM ;ADDRESS OF FILENAME IN RAM

CALL ASSIGN ;SET UP PARAMETER BLOCK
CALL GETDIR ; LOAD/CHECK DIRECTORY

PUSH IX

POP HL

LD BC,-8

ADD HL,BC ;POINT HL AT FILENAME

PUSH HL

CALL FIND ;CHECK FILE EXISTS

POP BC ;FINDL USES FILENAME AT (BC)

Jp NZ ,NOTFND ;WARN OPERATOR FILE NOT THERE

DELOOP: EX DE,HL

CALL DELETE : REMOVE THIS ENTRY

CALL FINDL ;s ANY CONTINUATION ENTRIES ?

JR Z ,DELOOP ; REMOVE THEM AS WELL

CALL STORE ;WRITE DIRECTORY TO DISK
etc.

D.D. Handbook No. 2.467(82)
Sheet 38 of 47 sheets

Issue 1
31/1/84

INDEX

Name Add. Section(s) Name Add. Section(s)

ASBIN E583 4.8 ouTB DF1A 6.5
ASSIGN E80C 5.5 PACC E58B 4.9
BINBCD E82D 5.10 PADDO E604 4.15
CLOSE E806 5.3, 5.26 PASP E5AA 4.13
CRLF E59C 4.11 PBCD E84B 5.19
DELETE E851 5.21, 5.26 PIP E809 5.4
DKINIT E821 5.7 PIPEXT E83F 5.15
DSKACT E84E 5.20 PREP E842 5.16
DSKIO E85D 5.25 PRVAL ES5AF 4.14
DSKIN E800 5.1 PTXT E3C7 4.2
DSKO0 E860 5.26 RDCHR E522 4.4
DSKOUT E803 5.2 READ E827 5.9
ECHO E597 4.10 RENTRY E11D 4.1
FIND E839 5.13 RETRY E845 5.17
FINDL E854 5.22 SCAN E414 4.3
FINDSR E857 5.23 SEEK E848 5.18
FIT E83C 5.14 SETIX E863 5.27
GETCSR E7A7 4.19 SPACE E5A5 4.12
GETDF E80F 5.6 SRCHR E541 4.6
GETDIR E836 5.12 SRCHU E547 4.7
INA DEEl 6.3 STORE E833 5.11
INB DF05 6.4 STRING D95C 6.1
LENGTH E85A 5.24 TTID E689 4.16
LPTXT DDEE 6.2 VDUOUT E6F9 4.17
MOVCSR E774 4.18 WRCHR E527 4.5
OFFSET E7F1 4.20 WRITE E824 5.8

EXAMPLES

1 Use of ASSIGN and GETDF

2 Use of monitor routines

3 Restoring VDU RAM mapping

4 Addition of a monitor command
5 Deletion of a file

D.D. Handbook No. 2.467(82)
Sheet 39 of 47 sheets

Issue 1
31/1/84

APPENDIX 1

Definition of "language"

The term "language" is wused in this handbook to denote a particular
class of program, with the object of defining which types of program may
use which areas of the system RAM. In this context the word does not
mean "programming language", which is an abstract concept. "Language"
here refers to a particular class of program which 1is responsible for
certain types of tasks. The examples below will hopefully illustrate
the point.

There are three main classes of program which run in Zelda. These are:

1. The Operating System.
This includes all the software which allows other programs to make
use of the system hardware via well defined software interfaces
(detailed in this handbook), e.g. I/0 drivers, file management
(DOS) , channelised I/O management. As well as the firmware (EPROM)
resident routines, user-supplied I/O drivers loaded into RAM are in
this category and must not use (or reside in) areas of RAM reserved

for the "language".

2. The "Language”.
The "language" is, most simply, the program which makes the system
perform a complete task. Typical features of the "language" are:

a) It is not a subroutine, and cannot be called.

b) It exits to the monitor command level on completion of the
task (or doesn”t exit at all).

C) It may alter the processor”s stack pointer irreversibly.

d) It provides the system with its "personality" for the duration
of the task.

There may only be one language in operation at any one time.
Examples of "languages" are the resident assembler, resident text
editor, VIDIT, TXTPRO, REDCOD, BASIC, LOOK etc.

3. The Applications Program.

Some "languages" are also applications programs; a program which
makes the system perform a specific useful task is an applications
program and the example "languages" above are all applications
programs except for BASIC. A BASIC interpreter is a "language" and
may use the RAM workspace allocated to "languages", but in this
case the function of the machine as seen by the user is controlled
by the user®s BASIC program. Here the BASIC program is the
applications program, not the BASIC interpreter. The BASIC program
may not use the language workspace directly without first reserving
the space required via the interpreter (e.g. by a DIM statement).
An example of such a BASIC applications program is PARCH.

D.D. Handbook No. 2.467(82)
Sheet 40 of 47 sheets

Issue 1

31/1/84
APPENDIX 2
Details of disk file storage
1. Introduction

3.

This appendix describes the disk storage system of the EPIM/27
(Zelda). The disk file and directory formats used are based upon,
and are compatible with, those devised for the BENNFAX Scenic
Services information storage and retrieval system. Other items of
operational equipment which use this format are PRESFAX, HF
Transmitter Control Systems, EAGLE (Electronic Announcements,
Graphics and Logo Equipment), Monitoring and Information Centre
VDUs and EWE (Effects Workshop Equipment).

Disk Format

The diskettes used are 8 inch, single-sided, single-density, with
77 tracks, 26 sectors-per-track and 128 bytes-per-sector (IBM 3740
format). The tracks are numbered 0 to 76 (0 being the outermost)
and the sectors are numbered 1 to 26, giving 2002 sectors in all or
about 250 Kbytes. From the point of view of the Disk Operating
System these sectors are considered to be contiguous and are
numbered 0 to 2001, corresponding to track 0 sector 1 and track 76
sector 26 respectively. Double-sided disks are used in the MIC
VDU, and have been experimentally implemented on a 2Zelda (with
suitable drives), both sides being formatted as above. 1In this
case the logical sector numbering is from 0 to 4003, sectors 0 to
2001 being on side 0 (as above) and sectors 2002 to 4003 on side 1,
but with the tracks numbered in reverse order. That is, logical
sector 2002 is side 1, track 76, sector 1 and logical sector 4003
is side 1, track 0, sector 26.

Disk usage

Track zero is not used at all by the Zelda DOS, i.e. logical
sectors 0 to 25 (and 3978 to 4003 in the case of a double-sided
disk), although conventionally track 0 sector 1 (logical sector 0)
contains details of the ownership of the disk in case it 1is "lost
and found”. The remainder of the disk, i.e. tracks 1l to 76, is
used for file and directory storage as detailed below. The disk
directory begins at logical sector 26 and may be up to 26 sectors
(one track) long, according to application (Zelda reserves 13
sectors for the directory); the rest of the disk is available for
file storage. The DOS allows for unusable tracks/sectors to be
flagged as such in the disk directory so that they will not be
written to, although this feature has never been fully utilised
(see 6 below).

D.D. Handbook No. 2.467(82)
Sheet 41 of 47 sheets

Issue 1
31/1/84

4.

File structure

All files consist of one or more disk sectors, organised as a
linked-list. The first 126 bytes of each sector contain data, and
the 1last two bytes contain a link to the next sector in the file,
or a special value to indicate that this is the last sector in the
file. The link bytes contain the logical sector number of the next
sector in the file, least significant byte first, and will be in
the range 0 to 7D1 (hex) - 0 to F89 (hex) for a double-sided disk -
although values 0 to 26 (hex) are not normally permitted. If the
sector is the 1last in the file, the 1last byte (i.e. most
significant byte of the "link") will have the value FF (hex). The
penultimate byte may in future be used to indicate how many bytes
of data there are in the last sector, in the range 0 to 126, but in
all present systems is set to FF. Note that when a file is read,
only the first sector of the file need be located by searching the
disk directory, as the rest of the file is found by following the
links. Note also that the sectors comprising the file may be
scattered on the disk in an arbitrary fashion and may not even be
in ascending logical sector order (even if written on a Zelda).
The disk directory is a special type of file which consists of a
linked-list of sectors, as wusual, but which always resides in
contiguous sectors beginning at logical sector 26.

Disk directory

The disk directory performs two main functions. It contains a list
of filenames and associated sector numbers, so that the location of
the first sector of a file can be determined, and it acts as a
"map" of the disk so that areas of free space can be identified.
Although only the first sector of a file needs to be found for that
file to be read (subsequent sectors are located by means of the
linked-list) the directory must contain information on where every
part of the file is located so that, when the file is deleted, the
space thereby released can be returned to free space. To this end,
the directory consists of a 1list of entries, each of which
corresponds to a block of contiguous sectors on the disk in one of
the following categories:

a) A contiguous block of sectors which are not currently allocated
to a file and are therefore available for storage of new files
("free space").

b) A contiguous block of sectors which must never be used (such as
a track which has failed to format correctly).

c) A contiguous block of sectors belonging to a named file, the
first sector of which is the start sector of the file.

d) A contiguous block of sectors belonging to a named file, the
first sector of which is NOT the start sector of the file.

e) The end marker of the directory.
These directory entries each consist of nine bytes, the first seven

of which indicate the type of entry (and the relevant filename, if
appropriate). The last two bytes contain the logical sector number

D.D. Handbook No. 2.467(82)
Sheet 42 of 47 sheets

Issue 1
31/1/84

of the first sector of the block (least significant byte first).
The entries are in the order of ascending logical sector number, and
therefore the directory allows the use of every sector on the disk
to be identified. The coding of the five types of entry is as
follows:

a) The first seven bytes of the directory entry contain the value
zero (00). Only the first byte may be considered significant,
although existing Zeldas check the first six bytes. The eighth
and ninth bytes hold the 1logical sector number of the first
sector in the block of free space.

b) The first byte contains the value FF (hex), the next six bytes
are reserved to indicate the status of the block but are
currently unused. The eighth and ninth bytes hold the logical
sector number of the first sector in the block of unusable
sectors.

c) The first seven bytes of the entry contain the name of the file,
in some form. The precise format of the name 1is system
dependent but in the case of Zelda it consists of the six ASCII
characters of the filename (padded with spaces 1if necessary)
followed by the single ASCII extension. Bit seven of the first
byte of the filename must be reset; the high bits of the other
six bytes are reserved for future use as file attribute
indicators. The eighth and ninth bytes hold the 1logical sector
number of the first sector in the file.

d) The format of the directory entry is as for (c) above, except
that bit seven of the first byte is set. This indicates that
the block belongs to part of a file which has been stored as two
or more blocks of contiguous sectors, and that this is not the
first block.

e) The first byte of the entry contains the value 80 (hex), the
next six bytes are reserved to contain a disk name but are
currently unused. The eighth and ninth bytes contain the total
number of sectors on the disk, i.e. 1in the case of a single-
sided disk they contain 7D2 (hex) -~ 2002 decimal.

The number of sectors available for file storage, assuming no areas
of the disk are marked as unusable, may be found by subtracting the
sector number in the first directory entry from the sector number in
the last directory entry. In the case of a normal Zelda this is 7D2
(hex) minus 27 (hex) giving 1963 sectors. The length of each block
of contiguous sectors may be found by subtracting the sector number
in the directory entry corresponding to this block from the sector
number in the next directory entry (of whatever type). Therefore,
the amount of free space available on the disk may be found by
adding together the 1lengths of all blocks whose directory entry
starts with 00; this is how the "Unused" value in PIP“s LIST command
is derived.

D.D. Handbook No. 2.467(82)
Sheet 43 of 47 sheets

Issue 1
31/1/84

An example disk directory is shown below:

57 4F 4D 42 41 54 53 27 00 first block of file WOMBAT.S
00 00 00 00 00 00 00 51 00 empty space, 10 sectors long
D7 4F 4D 42 41 54 53 5B 00 part of file WOMBAT.S

FF FF FF FF FF FF FF 68 00 unusable block, 26 sectors
D7 4F 4D 42 41 54 53 82 00 part of file WOMBAT.S

00 00 00 00 OO0 00 00 85 00 empty space, 100 sectors

46 52 4F 47 20 20 53 E9 00 first block of file FROG.S
00 00 00 00 00 00 00 00 01 empty space

80 80 80 80 80 80 80 D2 07 directory end marker

It must be emphasisad that whilst the directory identifies all
sectors on the disk associated with a particular file, it does not
include information on the order in which these sectors were
written. This information is available only from the links contained
within the sectors.

The disk directory is by its nature variable length, being shortest
(just two entries) with an empty disk and longest when there are
many, or heavily fragmented, files. All systems to date save time
by storing only sufficient sectors to contain the current directory,
and issue a "directory full" error message if the size of directory
exceeds either the RAM space or disk space allocated for it (these
may not always be the same - see 7 below). The 13 sectors allocated
for the directory on Zelda allow for a maximum of 182 directory

entries.

Disk initialisation

IBM format disks of the type employed are formatted with all sectors
(except those in track 0) containing data E5 (hex). Before use in
Zelda or other equipment using a compatible directory structure the
disk must be "initialised", i.e. an empty directory is written to
logical sector 26. In the case of a standard Zelda the empty
directory consists of:

00 00 00 00 00 00 00 27 00
80 80 80 80 80 80 80 D2 07

i.e. one contiguous block of sectors, 1963 sectors long. As an
example of an alternative "empty directory" format, the MIC VDU
initialises its double-sided disks as follows:

00 00 00 00 00 00 00 34 00
FF FF FF FF FF FF FF D2 07
00 00 00 00 00 00 00 D2 07
80 80 80 80 80 80 80 8A OF

The "dummy" (zero length) block at logical sector 7D2 is present to
allow side 0 of the disk to be read on a standard Zelda with version
8.1 DOS. This expects to see a directory entry containing 7D2
otherwise a DIRECIORY ERROR message is produced. Version 8.2 of the
DOS, as used in a double-sided Zelda, has had this restriction
removed. The sector number 34 in the first entry indicates that a
full track (26 sectors) is reserved for the directory.

D.D. Handbook No. 2.467(82)
Sheet 44 of 47 sheets

Issue 1
31/1/84

Note that, strictly speaking, a disk initialising operation should
check that all sectors on the disk are accessible (properly
formatted and readable) and if not should create appropriate
directory entries to prevent subsequent use of the bad sectors.
This has never been found necessary in practice.

Compatibility between systems

The degree of compatibility between disks written by different
systems (e.g. Zelda on the one hand and the MIC VDU on the other)
is affected by four factors: file contents, file names, directory
size and disk size.

Whether file names and file contents make sense to the system in
question will obviously depend on the nature of the system. Because
Zelda is a general purpose computer it will usually be possible both
to read and to write files in accordance with the requirements of
another system. On the other hand, a standard Zelda text file, for
example, may make no sense to an HF Control System VDU. File name
incompatibility could pose a problem if the system in gquestion uses
the high bits of the filename (except the first byte) for its own
purposes.

Directory size will cause a compatibility problem if the directory
on the disk is bigger than the space allocated for the directory in
RAM. This might occur if an attempt was made to read an MIC VDU disk
on a Zelda. Generally speaking this is not too much of a problem as
the directory size only approaches the limit imposed by the disk
when the disk is very full and/or the files are very fragmented.

A double-sided system (e.q. MIC VDU) should have no difficulty
reading and writing a single-sided disk. The disk directory
includes information on the disk size and prevents the system
attempting to access the second side. However, although side 0 of a
double-sided disk may be read by a single-sided Zelda (with DOS
version 8.1l) it should not be written to as the Zelda may fail to
write the complete directory back to the disk. As a rule this
cannot in any case occur because the different position of the index
hole in a double-sided disk prevents it being accepted by a single-
sided drive.

D.D. Handbook No. 2.467(82)
Sheet 45 of 47 sheets

Issue 1
31/1/84

APPENDIX 3

Input/output channel usage

As described in section 4.3 of part 2 of this handbook, there are six
input/output channels available. They are generally addressed by three
bits of the E register as follows:

Channel Bit 2,E Bit 1,E Bit 0,E
Console input 0 0 0
Console output 0 0 1
Object input 0 1 0
Object output 0 1 1
Source input 1 0 0
Source output 1 0 1

In the case of the "object" and "source" channels the names are largely
historical and correspond only to the conventional use of the channels
by the system firmware (assembler, loader etc.). The console input and
console output channels (0 and 1) are reserved for this purpose and are
vectored to special routines which perform various system housekeeping
utilities. They should not be reallocated to different drivers without
considerable thought, and should always be restored to their default
values (see entries for TTID (4.16), VDUOUT (4.17) and Appendix 5 of
part 2 of this handbook).

The "object" and "source" channels may be used for general purpose
input/output within user programs, but the following points should be

noted:

1. Some "background" programs (e.g. SPOOL and SUBMIT) use the source
input and output channels for their own purposes. The user is
therefore advised to use the object input and output channels in
preference, and to use the source channels only when one channel of
each type is insufficient.

2. The user should, in general, define the channel in use by setting
all of bits 0, 1 and 2 of the E register to the appropriate values,
even if the particular driver in use does not need all three:

Bit 0: The DSKIN (5.1) and DSKOUT (5.2) routines do in fact set bit
0 of E to a defined state (0 for DSKIN, 1 for DSKOUT) as a
side effect, but other driver routines should not test or
alter it. 1In general, any driver accessed via RDCHR (4.4)
or WRCHR (4.5) should not need to use bit 0 of E but a
direct call to a routine might; for example, bit 0 of E will
determine whether ASSIGN (5.5) and GETDF (5.6) opens a file
for input or output.

Bit 2: Bit 2 of E is not used directly by DSKIN or DSKOUT, but the
normal access to these routines via RDCHR or WRCHR
respectively requires that bit 2 be set to determine the
channel to use. Any call directly to DSKIN, DSKOUT, DSKIO
or DSKOO routines with the E register selecting a "console"
channel (0 or 1) will in fact result in the use of the

D.D. Handbook No. 2.467(82)
Sheet 46 of 47 sheets

Issue 1
31/1/84

corresponding "source" channel (4 or 5).

3. The system provides no protection against a call to RDCHR or WRCHR
with the three least significant bits of E set to an illegal value
(6 or 7) and a system crash is likely (see section 7 and appendix 4
of part 2).

D.D. Handbook No. 2.467(82)
Sheet 47 of 47 sheets

